79 research outputs found

    The name's bond.......disulfide bond

    Get PDF
    A repeating theme in the structural biology of disulfide oxidants and isomerases is the extraordinary architectural similarity between functionally related proteins from prokaryotes and eukaryotes. The recently determined structure of full-length yeast protein disulfide isomerase (PDI) reveals a U-shaped molecule with two redox-active sites. It bears a remarkable resemblance to the V-shaped, but dimeric, bacterial disulfide isomerases DsbC and DsbG. Similarly, the much-anticipated structure of the bacterial membrane protein DsbB, the redox partner of DsbA, comprises a flexible redox loop embedded in an antiparallel four-helix bundle. This architecture is similar to that of soluble eukaryotic Ero1p and Erv2p proteins, the redox partners of PDI. Importantly, the DsbB crystal structure is a complex with DsbA, providing our first view of the molecular interactions between these two proteins

    Structural and functional characterization of the oxidoreductase a-DsbA1 from wolbachia pipientis

    Full text link
    The &alpha;-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host\u27s reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key Wolbachia proteins will enable the development of inhibitors for chemical genetics studies. Wolbachia encodes a homologue (&alpha;-DsbA1) of the Escherichia coli dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of Wolbachia &alpha;-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, Wolbachia &alpha;-DsbA1 possesses a second disulfide that is highly conserved in &alpha;-proteobacterial DsbAs but not in other DsbAs. The &alpha;-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in E. coli nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of &alpha;-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a Wolbachia protein structure provides the basis for future chemical genetics studies.<br /

    Come for the looks, stay for the personality? A mixed methods investigation of reacquisition and owner recommendation of Bulldogs, French Bulldogs and Pugs

    Get PDF
    Brachycephalic breeds are proliferating internationally, with dramatic rises in popularity juxtaposed with common and severe breed-related health problems. Physical appearance is as a dominant factor attracting owners to brachycephalic breeds; however, whether these owners will choose their current breed for future ownership and develop 'breed-loyalty' in the face of health problems is not yet known. The aims of this study were (1) to quantify levels of, and explore factors associated with, brachycephalic dog owners' intentions to: (i) reacquire and/or (ii) recommend their current breed to potential first-time dog owners, and (2) to use qualitative methods to explore why brachycephalic dog owners would or would not recommend their current breed. This large mixed methods study reports on 2168 owners of brachycephalic breeds (Pugs: n = 789; French Bulldog: n = 741; Bulldogs: n = 638). Owners were highly likely to want to own their breed again in the future (93.0%) and recommend their breed to other owners (65.5%). Statistical modelling identified that first-time ownership and increased strength of the dog-owner relationship increased the likelihood of reacquisi-tion and/or recommendation. In contrast, an increased number of health problems, positive perception of their dog's health compared with the rest of their breed, and dog behaviour being worse than expected decreased the likelihood of reacquisition and/or recommendation. Thematic analyses constructed three themes describing why owners recommend their breed: positive behavioural attributes for a companion dog, breed suited to a sedentary lifestyle with limited space, and suitability for households with children. Five themes described why owners recommended against their breed: high prevalence of health problems, expense of ownership, ethical and welfare issues associated with breeding brachycephalic dogs, negative effects upon owner lifestyle and negative behavioural attributes. Understanding how breed-loyalty develops, and whether it can be attenuated, will be key to controlling the current population boom in brachycephalic breeds in the long-term

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot

    High resolution structure of an alternate form of the ferric ion binding protein from Haemophilus influenzae

    Get PDF
    The periplasmic iron binding protein of pathogenic Gram-negative bacteria performs an essential role in iron acquisition from transferrin and other iron sources. Structural analysis of this protein from Haemophilus influenzae identified four amino acids that ligand the bound iron: His(9), Glu(57), Tyr(195), and Tyr(196). A phosphate provides an additional ligand, and the presence of a water molecule is required to complete the octahedral geometry for stable iron binding. We report the 1.14-Angstrom resolution crystal structure of the iron-loaded form of the H. influenzae periplasmic ferric ion binding protein (FbpA) mutant H9Q. This protein was produced in the periplasm of Escherichia coli and, after purification and conversion to the apo form, was iron-loaded. H9Q is able to bind ferric iron in an open conformation. A surprising finding in the present high resolution structure is the presence of EDTA located at the previously determined anion ternary binding site, where phosphate is located in the wild type holo and apo structures. EDTA contributes four of the six coordinating ligands for iron, with two Tyr residues, 195 and 196, completing the coordination. This is the first example of a metal binding protein with a bound metal.EDTA complex. The results suggest that FbpA may have the ability to bind and transport iron bound to biological chelators, in addition to bare ferric iron

    Staphylococcus aureus DsbA does not have a destabilizing disulfide: A new paradigm for bacterial oxidative folding

    Get PDF
    In Gram-negative bacteria, the introduction of disulfide bonds into folding proteins occurs in the periplasm and is catalyzed by donation of an energetically unstable disulfide from DsbA, which is subsequently re-oxidized through interaction with DsbB. Gram-positive bacteria lack a classic periplasm but nonetheless encode Dsb-like proteins. Staphylococcus aureus encodes just one Dsb protein, a DsbA, and no DsbB. Here we report the crystal structure of S. aureus DsbA (SaDsbA), which incorporates a thioredoxin fold with an inserted helical domain, like its Escherichia coli counterpart EcDsbA, but it lacks the characteristic hydrophobic patch and has a truncated binding groove near the active site. These findings suggest that SaDsbA has a different substrate specificity than EcDsbA. Thermodynamic studies indicate that the oxidized and reduced forms of SaDsbA are energetically equivalent, in contrast to the energetically unstable disulfide form of EcDsbA. Further, the partial complementation of EcDsbA by SaDsbA is independent of EcDsbB and biochemical assays show that SaDsbA does not interact with EcDsbB. The identical stabilities of oxidized and reduced SaDsbA may facilitate direct re-oxidation of the protein by extracellular oxidants, without the need for DsbB

    Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue

    Get PDF
    The ubiquitous thioredoxin fold proteins catalyze oxidation, reduction, or disulfide exchange reactions depending on their redox properties. They also play vital roles in protein folding, redox control, and disease. Here, we have shown that a single residue strongly modifies both the redox properties of thioredoxin fold proteins and their ability to interact with substrates. This residue is adjacent in three-dimensional space to the characteristic CXXC active site motif of thioredoxin fold proteins but distant in sequence. This residue is just N-terminal to the conservative cis-proline. It is isoleucine 75 in the case of thioredoxin. Our findings support the conclusion that a very small percentage of the amino acid residues of thioredoxin-related proteins are capable of dictating the functions of these proteins

    Structural analysis of iron acquisition proteins

    No full text
    Bibliography: p. 171-181Some pages are in colour

    Ferric ion (hydr)oxo clusters in the “Venus flytrap” cleft of FbpA : Mössbauer, calorimetric and mass spectrometric studies

    Get PDF
    Isothermal calorimetric studies of the binding of iron(III) citrate to ferric ion binding protein from Neisseria gonorrhoeae suggested the complexation of a tetranuclear iron(III) cluster as a single step binding event (apparent binding constant K appITC = 6.0(5) × 105 M−1). High-resolution Fourier transform ion cyclotron resonance mass spectrometric data supported the binding of a tetranuclear oxo(hydroxo) iron(III) cluster of formula [Fe4O2(OH)4(H2O)(cit)]+ in the interdomain binding cleft of FbpA. The mutant H9Y-nFbpA showed a twofold increase in the apparent binding constant [K appITC = 1.1(7) × 106 M−1] for the tetranuclear iron(III) cluster compared to the wild-type protein. Mössbauer spectra of Escherichia coli cells overexpressing FbpA and cultured in the presence of added 57Fe citrate were indicative of the presence of dinuclear and polynuclear clusters. FbpA therefore appears to have a strong affinity for iron clusters in iron-rich environments, a property which might endow the protein with new biological functions
    corecore